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Recent studies in theoretical computer science have exploited new algorithms and methodologies based on
statistical physics for investigating the structure and the properties of the Satisfiability (SAT) problem.
We propose a characterization of the SAT problem as a physical system, using both quantum and classi-
cal statistical-physical models. We associate a graph to an SAT instance and we prove that a Bose-Einstein
condensation occurs in the instance with higher probability if the quantum distribution is adopted in the gen-
eration of the graph. Conversely, the fit-get-rich behavior is more likely if we adopt the Maxwell-Boltzmann
distribution. Our method allows a comprehensive analysis of the SAT problem based on a new definition
of entropy of an instance, without requiring the computation of its truth assignments. The entropy of an
SAT instance increases in the satisfiability region as the number of free variables in the instance increases.
Finally, we develop six new solvers for the MaxSAT problem based on quantum and classical statistical dis-
tributions, and we test them on random SAT instances, with competitive results. We experimentally prove
that the performance of the solvers based on the two distributions depends on the criterion used to flag
clauses as satisfied in the SAT solving process.
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1. INTRODUCTION

Nowadays, the SAT problem is regularly used for solving large-scale computational
problems, such as Al planning, protein structure prediction, haplotype inference,
circuit-level prediction of crosstalk noise, model checking, and hardware and software
verification [Clarke et al. 2008]. As a result, it has received significant research atten-
tion [Du et al. 1997; Mézard et al. 2002], and numerous solver algorithms have been
proposed and improved (e.g., by analyzing the structure of each instance [Hamadi et al.
2009]). Since evaluating all these techniques requires the generation of hard satisfiable

Authors’ addresses: C. Angione and A. Occhipinti, Computer Laboratory, University of Cambridge, William
Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK; email: claudio.angione@cl.cam.ac.uk; G.
Nicosia, Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125
Catania, Italy; email: nicosia@dmi.unict.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 1084-6654/2014/09- ART4 $15.00

DOL: http://dx.doi.org/10.1145/2629498

ACM Journal of Experimental Algorithmics, Vol. 19, No. 1, Article 4, Publication date: September 2014.


http://dx.doi.org/10.1145/2629498
http://dx.doi.org/10.1145/2629498

4:2 C. Angione et al.

Table I. Dictionary Translating the Graph (Left) into the ~-SAT Problem (Center) and Statistical
Physics Language (Right)

G=(V,E) k-SAT Statistical physics

node clause degeneration state of the energy level of the node
edge link between two clauses one particle for each degeneration state involved
node weight fitness of a clause value of the energy level

edge weight probability of being established weight on particles

out-degree update parameter 6 temperature of the system

instances [Spence 2010], several methods for generating random instances have been
presented to test the solvers’ performance [SAT-competition 2013].

Many SAT solvers are based on local search techniques [Grégoire et al. 2009], linear
programming [Zimmermann and Monfroglio 1997], or tabu search [Nonobe and Ibaraki
1998]. New methods for SAT problem analysis consist of translating each instance into
a graph (e.g., by using the planar graph approach [Kautz and Selman 1999] or the
Bose-Einstein distribution and the S2G algorithm based on quantum physics [Angione
et al. 2013]). On the other hand, over the last few years, several research fields have
witnessed a remarkable expansion due to the collaboration between physicists and
computer scientists [Mitchell et al. 1992; Mézard and Montanari 2007; Mézard and
Mora 2009]. Therefore, studying the 2-SAT problem through models used in statistical
physics represents an unprecedented opportunity to find a new characterization for
the satisfiability problem.

In this work, we prove that the S2G algorithm is unlikely to generate Bose-Einstein
condensed graphs when using the Maxwell-Boltzmann distribution (i.e., classical
physics instead of quantum physics). To this aim, we propose a version of the S2G
algorithm based on the Maxwell-Boltzmann distribution and we produce its phase di-
agrams, which we compare to the Bose-Einstein case. We also define the entropy of a k-
SAT instance and we introduce its temperature, in order to translate each instance into
a fully characterized physical system (summarized in Table I). Bose-Einstein graphs
have lower entropy than Maxwell-Boltzmann ones, in agreement with the physical
distribution of particles. In the phase diagram of an SAT formula, high entropy is as-
sociated with many free variables available to satisfy the few clauses of the formula,
which is a typical feature of the SAT phase. Finally, we propose six SAT solvers in-
spired by CHAINSAT [Alava et al. 2008] and ProBSAT [Balint and Frohlich 2010] and
augmented with classical and quantum statistical-physical approaches to classify a
SAT instance. The computational effort and the number of clauses satisfied by the
algorithm depend on the physical parameters (classical or quantum) and on the crite-
rion chosen to satisfy the instances in CHAINSAT and in PRoBSAT.

The remainder of the article is organized as follows. In Section 2, we introduce the
Bose-Einstein distribution. Section 3 describes the Maxwell-Boltzmann distribution
and the S2G version based on the classical physics. In Section 4, we define the entropy
of a 2-SAT instance. Finally, we describe the six new SAT solvers in Sections 5 and 6.

2. A CHARACTERIZATION OF SAT THROUGH QUANTUM PHYSICS

By translating a SAT formula into a graph, the S2G algorithm [Angione et al. 2013]
shows evidence of a process equivalent to the Bose-Einstein condensation in quantum
physics. A vertex v; is a clause C; of the £-SAT formula F = C;{ AC3 A ... AC,,. The graph
is built by defining global and local fitness functions (named f¢ and fZ, respectively)
for evaluating literals and clauses. Then, a metric is defined to compute how many
literals are not in common between two clauses. This metric is proved to be related
to the Hamming distance [Richardson and Urbanke 2008]. At each iteration of S2G,
a new clause of the SAT formula is added to the graph as a node, and its energy is
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computed. Then, the clause is linked to a clause already in the graph, and a particle is
put on both the energy levels of the clauses sharing the link.

2.1. The Bose-Einstein Distribution

Let us consider an isolated system of N identical and indistinguishable bosons confined
to a space of volume V and sharing a given energy E. Let us assume that these bosons
can be distributed into a set of energy levels, where each level E; is characterized
by an energy ¢; and a degeneration g;, representing the number of different physical
states that can be found at that level. The N identical and indistinguishable particles
are distributed among the energy levels, and each level E; contains n; particles, to be
accommodated among its g; quantum states. One can readily check that n; particles
may be put on the level E; (consisting of g; states) in [n; + (g; — 1)]! different ways.
Since bosons are indistinguishable and the physical states are equivalent, the number

of possible assignments of n; bosons on E; is w; = (r':@%"__ll))!! = ("ﬁfl_"fl). By iterating for
all the energy levels E;, a distribution {n;} (i.e., a distribution with n; particles on the
level E;, Vi) can be obtained in W = [, w; different ways. Specifically, w; is the number
of distinct microstates associated with the ith level of the spectrum, while W is the
number of distinct microstates associated with the whole distribution set {n;}.

The distribution corresponding to the statistical equilibrium is the most probable
one; thus, it is the one that may be reached in the largest number of possible ways.
Hence, we compute the maximum W subject to the conservation of the number of
particles ) ;n; = N and to the preservation of the energy of the system ), ¢;n; = E.
Using the method of Lagrange’s multipliers (applied to log W), we have the following
definition of Bose-Einstein distribution:

_ 8i
- extpe _1°

(1)

n;

where « = —{% and g = kBLT are inversely proportional (by means of Boltzmann’s
constant kp) to the absolute temperature T of the system at the equilibrium, and u¢
represents the chemical potential [Pathria 1996].

Given an ideal Bose-Einstein gas in equilibrium below its transition temperature,
the Bose-Einstein Condensation (BEC) is the property that a finite fraction of particles
occupies the lowest energy level. Below a critical temperature Tgrc near to 0 K, all
the particles become absolutely identical, with no possible measurement that can tell
them apart. The gas shows a very unusual state of aggregation of particles, called Bose-
Einstein condensate, also referred to as the fifth state of matter. According to Penrose
and Onsager [1956], we can provide a criterion of BEC for an ideal gas in equilibrium:
BEC <= % =¢%D NoBEC <= % =o0(1), where (no) is the average number of
particles that occupy the lowest energyli]evel E,.

2.2. Condensation Phenomena in a SAT Formula

The graph construction is thought of as a dynamical process. Given the graph G =
(V, E) at the ¢ — 1)th iteration, the S2G algorithm adds a clause C; to G as a node
v(Cy), by estimating the probability of being connected to each node v(C;,) already in
the graph as

_ ktj : fL(Ctj)
S e, FUC)
where k;, = degree(v(Cy)) is the connectivity of C;; (i.e., the number of links shared by

v(Cy,)), and f L(Ctj) is the fitness of the clause C;;. This probability distribution ensures
that a new vertex is likely linked to an existing one with high fitness value or/and high

(2)

i
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connectivity [Bianconi and Barabasi 2001]. A node v(C;,) entering the graph is assigned
the energy

e, = —T -log fL(Cy), (3)

where T' = 1/8 and B is a parameter used to model the temperature of the system.

In the mapping of S2G to quantum physics, every clause of the graph is associated
with the degeneration state of the energy level of that clause. For each link established
between two clauses, the S2G algorithm assigns a particle to each of the two degen-
eration states of the two clauses involved. The S2G-PA version of the algorithm also
includes the concept of preferential attachment. In particular, at each iteration i, the
node that joins the graph is forced to connect to a number of nodes between 1 and a
fixed upper bound p. Furthermore, an outgoing link is rewarded 6 < 1, whereas an
incoming link is rewarded 1, and therefore the graph is regarded as a directed graph.
The condensation of the SAT formula over its fittest clause is eventually mapped to the
emergence of a star-like topology in the graph. This phenomenon is associated with the
BEC of bosons on the lowest energy level available.

3. THE MAXWELL-BOLTZMANN S2G

An approach to construct a graph from A-SAT instances may also involve classical
physics, namely, the Maxwell-Boltzmann (MB) distribution. Here we address the key
question whether the S2G algorithm [Angione et al. 2013] could generate Bose-Einstein
(BE) condensed graphs by using the MB distribution. In particular, we prove that the
BEC in the satisfiability problem is more likely to occur if we use the BE distribution
in the construction of the graph. To this end, we develop a new version of the S2G
algorithm to generate graphs based on the MB distribution and analyze their phase
diagrams, comparing the behavior in the MB and BE cases.

3.1. The Maxwell-Boltzmann Distribution

From the classical physics standpoint, particles must be regarded as distinguishable
entities. The N particles are distributed among the energy levels, and each level E;
contains n; particles. Note that in the MB case, the set {n;} of occupation numbers does
not fully describe the system, since particles are distinguishable. Therefore, we need to
distinguish between which particles are occupying each energy level. In other words,
we need to count not merely the possible sets {{n;};} of occupation numbers, but also
the possible microstates in each set.

The number of possible sets of occupation numbers is counted by taking into account
that particles are distinguishable. Therefore, the selection of which particle is accom-
modated on which energy level must be ordered. At this stage, we do not investigate
the order inside energy levels because we will do so When counting the microstates.
As a result, the distribution set n; is obtainable in ﬂ ; different ways. Nevertheless,
due to the Gibbs correction factor (see Pathria [1996]) or, equlvalently, using Stirling’s
approximations for the factorial N!, we obtain the correct counting HL- Tt

As regards microstates, since particles are distinguishable, when accommodating n;
particles on the energy level E;, any of its n; particles may be put into any of its g;
quantum states independently from one another, and all the resulting microstates are
considered as distinct. In other words, each particle must be assigned one of the g;
quantum states, and this can be done in g; different ways. By iterating this assignment
independently from one particle to another, n; particles may be put on the level E;
(consisting of g; states) in g;" different ways.

Combining the two results, we finally obtain W = [; il, which is the total number of
possible distinct microstates of the system. Using the same method as in the BE case,
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(a) BE case (b) MB case
Fig. 1. Different graphs with the same FW = 1. In (a), a BEC has taken place (i.e., one node has a huge

fraction of edges and the remaining fraction is shared among all the other nodes), while (b) does not show
any condensation.

this expression leads to the following definition of Maxwell-Boltzmann distribution:

8i
eOtJr/sEi '

4)

n, =

3.2. An S2G Version Based on Classical Physics

Since particles in the S2G algorithm are associated with links between clauses in
the graph of an SAT instance, and since the particles of the MB distribution are
distinguishable, the idea underlying the MB version of the S2G algorithm is that also
the links between clauses must be distinguishable. Therefore, when we run the S2G
algorithm using the MB distribution, we (1) switch off the preferential attachment (PA)
used in Angione et al. [2013] and (2) ensure that if a new node i will be linked to a node
J with probability p;;, then degree(i) = degree(i) + p;; and degree(j) = degree(j) + p;j.
This new pattern permits that each new node is connected to a variable number of
nodes in the graph (including zero) and therefore could generate graphs with many
connected components. Hence, the original definition of Fraction Winner,

FW = Wiinks/ tiinks» 6))

where wyns = the number of links shared by the winner and #;,,; = the number of
links of the whole graph [Angione et al. 2013], leads to graphs with the same FW, but
with different topological structure (Figure 1).

Our goal is to study whether the graph built by using the MB distribution can show
cases of BEC. For this reason, we introduce a new definition of FW, which takes into
account the presence of connected components. Let G(V, E) be a graph with |V | vertices
and |E| edges. We compute the number of connected components (CCs) by running the
Depth First Search (DFS) algorithm [Cormen et al. 2001]. From the CCs, we obtain the
number of nodes shared by these components (CNs), namely, all the nodes of G with
nonzero degree. Then, we define the Generalized Fraction Winner as

GFW =FW .CNs/|V|. (6)

We remark that this definition is a generalization of the previous definition of FW.
Indeed, in the BE construction, the PA ensures that CNs = |V|. In Figure 2, we show
the comparison between the GFW in the BE and MB cases. Remarkably, the MB values
are always lower than BE values, indicating that the probability of Bose-Einstein
condensation is higher if the BE distribution is adopted in the S2G algorithm.

4. EXPERIMENTAL RESULTS

All the results included in this section have been obtained with an experimental pro-
tocol consisting of 100 SAT instances for each combination of parameter values, with
30 S2G graph generations per instance.
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Fig. 2. Generalized Fraction Winner BE-MB. This plot shows the comparison between the GFW in the MB
and BE cases. The MB plots always shows lower values than BE plots. Hence, BEC takes place under BE
conditions with more probability than under MB conditions. The experimental data points have been fitted
with a sixth-order regression curve using the least-squares approach. The gray box shows the region of
the phase diagram where the phase transition between satisfiable and unsatisfiable instances of 3-SAT is
located [Monasson et al. 1999; Achlioptas and Ricci-Tersenghi 2009].

4.1. The Entropy of a k-SAT Instance

The aim of this section is to characterize the £2-SAT problem as a physical system,
in order to analyze the complexity of certifying the satisfiability of a random £-SAT
instance, and eventually to find a satisfying assignment. Let us introduce a definition
of entropy for a k-SAT instance, based on a discretized form of the von Neumann entropy
[Kopp et al. 2007]:

n
VN(x, p.q) = - > plxi) loglg(x) (i), (")
i

where p and ¢ are, respectively, a true distribution and an approximated distribution
of a random discretized variable x with n possible values. In this work, we set n =
number of energy levels, and we compute the entropy every time a new clause is added
to the graph. The final entropy is computed after the last clause of the 2-SAT instance
is added to the final graph. In a BE system, when a new node v is added to the graph
using the S2G algorithm, we define

gpe(x;) = number of different physical states g; on the level
E; /number of nodes already added to the graph,;

(x;) = 1 if v has been added to the level E;
PBE\Xi) = 1 0 otherwise.
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Fig. 3. wvon Neumann entropy of 3-SAT. The entropy increases as « decreases. Since the entropy represents
the spatial disorder of the particles [Bal’'makov 2001], in the 2-SAT problem, the physical concept of disorder
is related to the complexity of certifying the satisfiability of the instance. The plot shows that BE systems
always have lower entropy than MB ones, in agreement with the physical distribution of particles. Indeed,
BE systems are often characterized by particles established on the same energy level, which in the case of
BEC is the lowest available.

Conversely, in an MB system we set

gumB(x;) = number of different physical states g; on the level
E; /number of nodes already added to the graph;

pumB(x;) = probability p;, computed by S2G, that a new node
is added to the level E;.

In the characterization, the number of nodes of the graph equals the number of avail-
able degeneration states, ¢ is the expected distribution followed by the new node when
linking to an existing one, and p is the actual distribution, the outcome of the actual
link established.

In Figure 3, we plot the von Neumann final entropy as a function of the clauses-
to-variables ratio a. The BE systems always have lower entropy than the MB ones,
and the entropy behavior is in keeping with the distribution of BEC shown in Angione
et al. [2013]. Hence, the larger the probability is that BEC occurs, the larger the
entropy is. Moreover, the plot shows that when « decreases, the entropy increases.
This process is associated with an increment of the spatial (geometric) disorder of the
particles [Bal’'makov 2001]. It follows that the disorder of the particles is related to the
satisfiability of the instance (which depends on the value of @). In this way, we are able
to characterize the complexity of certifying the satisfiability of a 2-SAT instance by
computing its entropy (see Table II). We have also performed further analyses, omitted
due to lack of space, using the Rényi entropy [Rényi 1961] and the information gain
[Niven 2005] to confirm our results.
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Table II. Dictionary Translating Entropy Status of the SAT Formula into Its Structure as a Function of «

Entropy Particle status Information SAT-instance structure SAT/UNSAT

high disorder high many free variables available to SAT
satisfy the few clauses of the formula

low order low few free variables available to satisfy UNSAT

the many clauses of the formula

When available, a free variable can be set to TRUE or FALSE so as to satisfy the instance. An instance in
the SAT or UNSAT phase is satisfiable or unsatisfiable (respectively) with high probability.

Theta 0.01 —+—  Theta 0.22

Theta 0.02 —<—  Theta 0.23 —e—
Theta 0.03 Theta 0.24 —o6—
Theta 0.04 Theta 0.25 —o—
Theta 0.05 —=—  Theta 0.26 —&—
Theta0.06 —e—  Theta0.30 —o&—
Theta 0.07 —e—  Theta 0.35 —e—
Theta0.08 —~—  Theta 0.40 —o—
Theta0.09 ——  Theta 0.45

Theta 0.10 —=—  Theta 0.50

Theta0.11 —~—  Theta 0.55 —&—
Theta 0.12 Theta 0.60 —=—
Theta 0.13 Theta 0.65 —=—

Theta0.14 —e—  Theta 0.70 —=—
Theta0.15 —+—  Theta0.75 —&—
Theta0.16 —e—  Theta 0.80 —=&—
Theta 0.17 —e—  Theta 0.85 —#&—
Theta0.18 —e—  Theta 0.90

Theta 0.19 —e—  Theta 0.95
Theta0.20 —e—  Theta 1.00 —&—
Theta 0.21

Fraction Winner

0.2 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
o

Fig. 4. Fraction winner of 3-SAT. We report the number of links shared by the winner node against «.
After a decrease for low values of a, the FW is almost linear for high values of 6. For low values of 6, we
observe a nonlinear variation, meaning that if « approaches 0, the number of BEC cases increases with a
high derivative. This behavior of 6 is strongly related to the physical property of having a large number of
BECs when the absolute temperature approaches 0.

4.2. The Role of the Noninteger Out-Degree 6

In Angione et al. [2013], the parameter 6 €]0; 1] represents the out-degree increment
of the node v(C;,) linked to the existing node v(C;;) during the generation of the graph.
In particular, the same edge between the new node v(Cy;) and v(Cy,) increases their
connectivities k, and k; as k;, = k;, + 6 and k; = k; + 1. Making use of the relation
ki =6 - od(v(C;)) + id(v(C;)), where od and id are the out-degree and in-degree of v(Cy,),
respectively, nodes aim to connect to a particular node, which gets richer and richer.
Indeed, as incoming links are rewarded more than outgoing links (1 and 6 < 1, respec-
tively), the connectivity of the node that acquires links increases much more than the
connectivity of the nodes linking to it. In this work, we aim to show the connection
between 6 and the temperature of the system under investigation, namely, the 2-SAT
instance.

It is largely known that BEC takes place only in a dilute gas of bosons cooled to
temperatures near to the absolute zero [Pethick and Smith 2001]. Therefore, we analyze
the system focusing on values of 6 near zero in order to prove that for low values of
0, the BEC takes place with more probability than for high values of 6. In order to
understand the role played by 0, we analyze 41 different values of € ]0, 1]. Figure 4
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Fig.5. Nonlinearity of the fraction winner as function of 6. The plots of the FW have been clustered according
to their nonlinearity, with 6 € ]0, 0.26]. When 6 approaches 0, the FW exhibits a linear behavior, while the
nonlinearity starts from 6 = 0.04. Interestingly, in [0.09, 0.14], there is a large increment of nonlinearity.

shows that the probability of BEC increases as 6 decreases. Hence, if 0 approaches zero,
the number of BECs increases, suggesting that the parameter 6 in the S2G algorithm
is related to the absolute temperature in the corresponding physical system.

In order to investigate thoroughly the nonlinearity shown by the FW as a function
of 6, we define g(«) as the third-order polynomial fitting computed with the least-
squares approach for each curve plotted in Figure 4. We define the following measure

of nonlinearity over an interval [a, b] as fab |g”(a)|. Using this formula, we can compute
the amount of variation in the first derivative of g, thus quantifying the nonlinearity
of g in its domain. Notably, the results shown in Figure 5 allow one to identify some
clusters of fraction winner plots showing similar nonlinear behavior.

5. THE MAXWELL-BOLTZMANN CHAINSAT

In Section 3, we focused on the fraction winner related to the MB and the BE distri-
butions. The different results obtained by running the S2G algorithm with these two
distributions led to the creation of the final graphs with different topological struc-
tures. That is, the energy assigned by S2G to each clause (i.e., the weight of the clause)
changes depending on the distribution being used. In order to study the changes that
each distribution involves, here we run the LC version of CHAINSAT [Angione et al.
2013] using the weight provided by the S2G algorithm run with MB and BE distribu-
tions. The SAT instances are created through A. van Gelder’s generator MKcNF.c.! The
MaxSAT problem consists of determining the truth assignments such that the number
of clauses satisfied is maximized [Festa et al. 2007]. In particular, we investigate how
the number of satisfied clauses and the number of flips change in each modified ver-
sion of CHAINSAT (named MB-CHAINSAT and BE-CHAINSAT). Surprisingly, as shown
in Figure 6, by comparing the percentage of satisfied clauses, we can speculate that
MB-ChainSAT satisfies the same number of instances as BE-ChainSAT.

Lftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances. We set the generator to
obtain both satisfiable and unsatisfiable formulas, so as to obtain a purely uniform random %-SAT distribu-
tion.
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MaxSAT-BE ——
MaxSAT-MB --------

Percentage of
Satisfied Clauses

Fig. 6. MaxSAT for LC-ChainSAT. We plot the percentage of clauses satisfied by BE-ChainSAT and MB-
ChainSAT as a function of the number of clauses m and variables n by using the Linked-Clauses version
(LC). Although MB-ChainSAT seems to solve a higher percentage of clauses than BE-ChainSAT, the detailed
analysis in Table III highlights that they solve the same number of instances for every value of n.

Table Ill. Summary of LC SAT Solvers’ Performance

LC-Maxwell Boltzmann LC-Bose Einstein ChainSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.8567 1,185,219.00 0.8567 1,187,645.11 0.8567 1,176,755.92
50 0.8580 1,200,317.11 0.8580 1,159,281.68 0.8580 1,165,854.05
75 0.8587 1,228,486.09 0.8587 1,219,520.08 0.8587 1,231,789.81
100 0.8590 1,280,600.65 0.8590 1,280,042.75 0.8590 1,296,716.23
Average 0.8581 1,223,655.71 0.8581 1,211,622.34 0.8581 1,217,779.00

For each value of n (number of variables), we report the percentage of satisfied clauses and the number of
flips performed by MB-CHAINSAT, BE-CHAINSAT, and CHAINSAT using the LC version. All the algorithms
ensure the same percentage of satisfied clauses. In terms of flips, CHAINSAT outperforms MB-CHAINSAT and
BE-CHAINSAT only for n = 25. When n > 25, BE-CHAINSAT outperforms MB-CHAINSAT and CHAINSAT, as it
solves the same percentage of clauses with fewer flips.

We investigate this comparison more thoroughly by analyzing the difference of sat-
isfied clauses for each value of n (number of variables). In particular, we observe that
MB-CHAINSAT and BE-CHAINSAT satisfy approximately the same number of clauses
(Table III). We also study the number of flips performed by the two algorithms, repre-
senting their computational effort. Figure 7 displays the number of flips (normalized
to 1) obtained by running BE-CHAINSAT and MB-CHAINSAT. MB-CHAINSAT requires a
higher computational effort than BE-CHAINSAT, except for n = 25. A detailed analysis
of the number of flips is shown in Table III.

The average number of flips used for solving an instance with MB-CHAINSAT
is 1223655.71 against 1211622.34 with BE-CHAINSAT. Therefore, on average, BE-
CHAINSAT needs a lower computational effort than MB-CHAINSAT. This is due to the
structure of the BE graphs, with a fraction winner higher than MB graphs (as shown in
Section 3): a node that shares more links enables one to find quickly a truth assignment
for the instance, performing fewer flips. Therefore, if we consider graphs with n > 25
and our LC version of CHAINSAT, BE-CHAINSAT performs better than MB-CHAINSAT,
as it solves the same number of instances performing fewer flips.
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Flip-BE ——
Flip-MB ———

Percentage of
Number of Flips

Fig.7. Computational effort of LC-CHAINSAT . We plot the number of flips (normalized to 1) performed by BE-
CHAINSAT and MB-CHAINSAT using the LC version. BE-CHAINSAT employs fewer flips than MB-CHAINSAT,
therefore requiring a lower computational effort. This highlights the importance of the topological structure
of a graph. Since with the BE distribution the graph has an FW higher than the graph built with the MB
distribution, there exists a node that, sharing a large number of links, allows one to find a solution performing
fewer flips.

MaxSAT-BE ———
MaxSAT-MB -

Percentage of
Satisfied Clauses

Fig. 8. MaxSAT for NLC-CHAINSAT. We plot the percentage of clauses satisfied by BE-CHAINSAT and
MB-CHAINSAT as a function of the number of clauses m and variables n by using the Not-Linked-Clauses
versions (NLCs). MB-CHAINSAT seems to solve a higher percentage of clauses than BE-CHAINSAT. Actually,
MB-CHAINSAT outperforms BE-CHAINSAT only for few values of «. The two algorithms solve exactly the
same number of instances for n = 75. (A more detailed analysis is shown in Table IV.)

Conversely, when using the NLC version of CHAINSAT [Angione et al. 2013], MB-
CHAINSAT generally outperforms BE-CHAINSAT in terms of satisfied clauses, but
when m approximates 400, BE-CHAINSAT satisfies more clauses than MB-CHAINSAT
(Figure 8). We investigate this comparison more thoroughly by analyzing the difference
of satisfied clauses for each value of n (number of variables). The results are shown
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Table IV. Summary of NLC SAT Solvers’ Performance

NLC-Maxwell Boltzmann NLC-Bose Einstein ChainSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.8567 1,175,219.03 0.8563 1,177,645.11 0.8567 1,176,755.92
50 0.8577 1,162,949.63 0.8580 1,166,531.26 0.8580 1,165,854.05
75 0.8587 1,211,373.56 0.8587 1,229,056.62 0.8587 1,231,789.81
100 0.8590 1,269,268.24 0.8587 1,275,695.48 0.8590 1,296,716.23
Average 0.8580 1,204,702.62 0.8579 1,212,232.12 0.8581 1,217,779.00

For each value of n (number of variables), we report the percentage of clauses satisfied and the number of
flips performed by MB-CHAINSAT, BE-CHAINSAT, and CHAINSAT by using the NLC version. As regards flips,
MB-CHAINSAT outperforms the other algorithms for every value of n.

Flip-BE ——
Flip-MB ———

Percentage of
Number of Flips

Fig. 9. Computational effort of NLC-CHAINSAT . We plot the number of flips (normalized to 1) performed by
the two algorithms by using the NLC version. BE-CHAINSAT employs more flips than MB-CHAINSAT, thus
requiring a higher computational effort.

in Table IV. Finally, in Figure 9, we show that in the NLC case, MB-CHAINSAT is
computationally less expensive than BE-CHAINSAT.

In conclusion, for the LC version, the BE distribution (namely, BE-CHAINSAT) always
outperforms MB-CHAINSAT and CHAINSAT except for n = 25, as it solves the same
percentage of clauses with fewer flips. Conversely, for the NLC version and in terms
of computational effort, the MB distribution (namely, MB-CHAINSAT) outperforms the
other algorithms for every value of n.

6. THE MAXWELL-BOLTZMANN PROBSAT AND THE BOSE-EINSTEIN PROBSAT

We have also analyzed the topological structure of the BE and MB graphs by introduc-
ing two new versions of the PROBSAT algorithm. PRoBSAT, winner of the Random SAT
track from the SAT Competition 2013, is a stochastic local search SAT solver based on
probability distributions. Since the algorithm uses a random selection of unsatisfied
clauses, we modified this criterion introducing the clauses’ energy provided by the S2G
algorithm. In particular, we replaced the random choice of the unsatisfied clause with
an ordered one. By using the same method of the NLC-CHAINSAT [Angione et al. 2013],
we selected the clause with the lowest energy among the unsatisfied clauses. Hence,
we obtained two versions of PROBSAT: MB-ProBSAT and BE-ProBSAT, which take
into account the clauses’ energy provided by the S2G algorithm run with MB and BE
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Table V. Summary of PROBSAT Solvers’ Performance

Maxwell Boltzmann-ProbSAT Bose Einstein-ProbSAT ProbSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.9530 550,801.42 0.9526 550,803.49 0.9526 550,797.85
50 0.9079 592,512.60 0.9078 592,525.46 0.9071 592,498.46
75 0.8653 603,676.02 0.8665 603,680.32 0.8645 603,711.44
100 0.8217 610,411.94 0.8202 610,441.18 0.8227 610,311.33
Average 0.8870 589,350.49 0.8868 589,362.61 0.8867 589,329.77

For each value of n (number of variables), we report the percentage of clauses satisfied and the number of
flips performed by MB-ProBSAT, BE-ProBSAT, and PrROBSAT. As regards the percentage of clauses satisfied,
MB-ProBSAT and BE-ProBSAT outperform the PRoBSAT algorithm for n = 25, n = 50, and n = 75.

distributions, respectively. As done before for the CHAINSAT algorithm, if all the clauses
in the set of unsatisfied clauses have already been chosen once, we reset the original
random choice to prevent the algorithm from always analyzing the same clauses.

We tested the algorithms on the same set of instances previously used for the Chain-
SAT algorithm and we ran the PrRoBSAT with maxTries = 1 and maxFlips = 10%. In
Table V, we present a comparison between the three different versions of PRoBSAT
(MB-ProeSAT, BE-ProBSAT, and ProBSAT). Both MB-ProBSAT and BE-ProBSAT sat-
isfy more clauses than the original PRoBSAT, except for n = 100. In terms of flips, the
two modified versions require a slightly higher computational effort than ProBSAT.
This implies that choosing the clauses with the lowest energy provides a useful tool to
maximize the number of satisfied clauses, confirming the hypothesis that the clauses
with the lowest energy play an important role in the performance of the SAT solvers.

7. DISCUSSION AND CONCLUSIONS

In this research work, we have proposed a statistical-physical characterization for the
Satisfiability problem. Starting from the S2G algorithm [Angione et al. 2013], we have
developed a new algorithm able to translate an SAT instance into a graph by using
the BE (quantum) or the MB (classical) statistical distributions. The phase diagram
of the graph provided by the algorithm shows evidence of condensation as the clauses-
to-variables ratio decreases. Furthermore, we have carried out a systematic study
to employ the characterization in the well-known CHAINSAT [Alava et al. 2008] and
ProBSAT [Balint and Frohlich 2010] solvers, without requiring a priori investigation
of their solutions. The fitness-based sorting provided by our algorithm allows us to
enhance both solvers.

In order to investigate the role of the quantum physics in our algorithm, we have
cross-compared the behavior of our algorithm when using classical or quantum physics.
From the phase diagrams, it is evident that graphs are more likely to undergo BEC if
they are generated through the algorithm based on quantum physics, while the fit-get-
rich behavior is more likely with the algorithm based on classical physics. Moreover,
when using our quantum and classical algorithms to drive the CHAINSAT and ProBSAT
solvers, BE-CHAINSAT is computationally less or more expensive than MB-CHAINSAT,
in terms of flips performed, depending on the CHAINSAT version used (LC or NLC),
while MB-ProBSAT outperforms BE-ProBSAT in terms of flips.

Notably, we have also defined the entropy of an SAT instance according to the infor-
mation gained during the generation of its graph through S2G. We have obtained that
a high entropy is associated with high disorder, and with the SAT phase. An instance
with high entropy has a large number of free variables that can be assigned a conve-
nient truth value to satisfy the SAT instance. Furthermore, from a statistical-physical
standpoint, we have shown that the temperature of the SAT problem is mapped by the
parameter representing the out-degree assigned dynamically to the nodes of the graph
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associated with the instance. These findings highlight the emergence of a comprehen-
sive characterization of the £-SAT problem using the classical and quantum particle
distributions of statistical physics.
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