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a b s t r a c t

This paper is concerned with the complex behavior arising in satisfiability problems. We present a new
statistical physics-based characterization of the satisfiability problem. Specifically, we design an algo-
rithm that is able to produce graphs starting from a k-SAT instance, in order to analyze them and show
whether a Bose–Einstein condensation occurs. We observe that, analogously to complex networks, the
networks of k-SAT instances follow Bose statistics and can undergo Bose–Einstein condensation. In par-
ticular, k-SAT instances move from a fit-get-rich network to a winner-takes-all network as the ratio of
clauses to variables decreases, and the phase transition of k-SAT approximates the critical temperature
for the Bose–Einstein condensation. Finally, we employ the fitness-based classification to enhance SAT
solvers (e.g., ChainSAT) and obtain the consistently highest performing SAT solver for CNF formulas,
and therefore a new class of efficient hardware and software verification tools.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Satisfiability (SAT) is a famous logical reasoning problem de-
fined in terms of Boolean variables and logical constraints (clauses)
describing the relation among these variables. Each such variable
can be negated or not, that is, each variable (a literal) can be either
True or False; the constraint is built as the OR function of the k vari-
ables (k-SAT) [1]. In general, propositional formulas are repre-
sented in Conjunctive Normal Form (CNF). A CNF formula
consists of a conjunction of m clauses, each of which consists of a
disjunction of k literals. SAT has received a great deal of theoretical
and experimental study as the paradigmaticNP-complete problem
as decision problem [2,3] and NP-hard as solution when there are
more than two literals for each clause [4]. The SAT problem is also
crucial for solving large-scale computational problems, such as AI
planning, scheduling [5], protein structure prediction, haplotype
inference, circuit-level prediction of crosstalk noise, computer chip
verification, termination analysis in term-rewrite systems, model
checking, and hardware and software verification [6,7]. Indeed,
most verification tools consist of decision procedures to check
the satisfiability of a given formula generated by the verification
process. As a result, the subject of practical SAT solvers has re-
ceived considerable research attention, and numerous solver algo-
rithms have been proposed and implemented [8–10]. In particular,

several SAT solvers rely on linear programming [4] or tabu search
[11] and have been thoroughly analyzed in their worst cases [12].
When we consider randomly generated instances, SAT is called
random satisfiability problem. The original aim for inspecting ran-
dom instances of k-SAT has been the desire to decipher the hard-
ness and complexity of typical (standard) instances. For this
reason, research works on k-SAT have been focused on developing
algorithms for counting the number of solutions [13–15], and ana-
lyzing their computational complexity [16].

The cooperative dynamics of the interacting clauses can exhibit
new rich behavior that is not evident in the properties of the indi-
vidual clauses and literals (the elementary units) that make up a
SAT formula (the many-body system) of a very large numbers of
these units. Standard experimental methods for studyingNP-com-
plete problems use a random generator of the problem instances
and an exact (possibly optimized by means of heuristics) algorithm
to solve them. By analyzing the results with proper measures (e.g.,
the number of recursive calls), one can obtain important informa-
tion about the problem, such as phase transitions, topological char-
acterizations of the search space, and clusters of solutions [17].
During the last 20 years, studies in theoretical computer science
have exploited new methodologies, based on statistical physics
and experimental computer science, for investigating the nature
and properties of NP-complete problems [18–20].

There is a deep connection betweenNP-complete problems and
models studied in statistical physics. This connection leads to
determining computational complexity from characteristic phase
transitions in the k-SAT problem [2]. In Sherrington’s work
[21], k-SAT is thought of as an extension of the Sherrington and
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Kirkpatrick’s spin glass model [22]. Moreover, its graph structure is
an extension of the Erdös–Rényi random graphs; in particular, k-
SAT models on Erdös–Rényi graphs showed the existence of free
energy limits [23]. Although computer programs based on local
dynamical algorithms are unable to reach the HARD-SAT phase
in the neighborhood of the k-SAT phase transition, spin glasses
techniques [24] allow to quantify the HARD-SAT region between
the SAT and UNSAT ones. Mézard et al. [3] showed the existence
of an intermediate phase in k-SAT problems below the phase tran-
sition threshold, and a powerful class of optimization algorithms
was designed and tested successfully on the largest existing bench-
mark of k-SAT. Krzakała et al. [25] discovered and analyzed four
phase transitions in the solution space of random k-SAT. As the
constraint density increases, clusters of solutions appear in the
solution space; then, solutions condense over a few large clusters.
These results strengthen the link between computational models
and properties of physical systems, and offer the possibility of
new developments and discoveries in this research field.

The goal of our research is to characterize the condensation
phenomenon for k-SAT problems by translating a formula into a
graph G = (V,E), and then to employ this characterization to im-
prove the well-known ChainSAT algorithm [26]. Inspired by Bian-
coni and Barabási’s research work on Bose–Einstein condensation
(BEC) in complex networks [27], we design an algorithm that pro-
duces graphs starting from a k-SAT instance and associates each
clause with a fitness value. The phase diagram of the graph pro-
vided by the algorithm shows evidence of BEC for low values of
the clauses-to-variables ratio. The BEC, from the very beginning,
was associated with superfluidity: as London stated in 1938, ‘‘the
peculiar phase transition (k point) that liquid helium undergoes
at 2.19 K, most probably has to be regarded as the condensation
phenomenon of the Bose–Einstein statistic’’ [28]. Hence, superflu-
idity in a k-SAT formula could be thought of as a consequence of
the low constraint density that we find in the SAT phase. Our re-
sults give new hints in understanding the complexity and the
structure of a k-SAT instance in phase transition. The graph of a gi-
ven instance allows us to satisfy it by finding a truth assignment
only for the fittest clauses. Our approach makes use of complex
networks in order to operate on the instance, without requiring a
priori investigation of its solutions.

The rest of the paper is organized as follows. First, we give an
overview of the Bose–Einstein distribution and tailor it to the sat-
isfiability problem by translating a SAT formula into a graph. Then,
we investigate two variants of our algorithm. We present experi-
mental evidence supporting the hypothesis that the phase transi-
tion between solvable and unsatisfiable instances of 3-SAT
approximates the locus of the Bose–Einstein condensation in the
phase diagram of 3-SAT formulas. Finally, we show how to improve
the ChainSAT solver by using our algorithm to provide a clause
ordering.

2. Bose–Einstein distribution

The analysis of the state of matter, from a quantum point of
view, states that all particles of the same type are equal and indis-
tinguishable. Let us consider an isolated system of N identical and
indistinguishable bosons confined to a space of volume V and shar-
ing a given energy E. These latter are particles that do not obey the
Pauli exclusion principle, since two or more bosons may have ex-
actly the same quantum numbers. We assume that these bosons
can be distributed into a set of energy levels, where each level Ei

is characterized by an energy �i, i.e., the energy of each particle set-
tled on that energy level, and a degeneration gi, representing the
number of different physical states that can be found at that level.
Accordingly, the N identical and indistinguishable particles are dis-

tributed among the energy levels, and each level Ei contains ni par-
ticles, to be accommodated among its gi quantum states. For
instance, if ni = 2 and gi = 3, the particles a and b can settle on Ei

in one of these ways: abk�k�, �kabk�, �k�kab, ak�kb, akbk�,
�kakb. (Permutations of particles must not be included, since a
and b are indistinguishable.)

It is straightforward to check that ni particles may be put on the
level Ei (consisting of gi states) in [ni + (gi � 1)]! different ways.
Since bosons are indistinguishable and the physical states are
equivalent, the number of possible assignments of ni bosons on Ei

is:

wi ¼
ðni þ gi � 1Þ!
ni!ðgi � 1Þ! ¼

ni þ gi � 1
ni

� �
: ð1Þ

By iterating for all the energy levels Ei, one can observe that a dis-
tribution {ni} (i.e., a distribution with ni particles on the level Ei,
"i) can be obtained in

W ¼
Y

i

wi ¼
Y

i

ðni þ gi � 1Þ!
ni!ðgi � 1Þ! ð2Þ

different ways. In other words, wi is the number of distinct micro-
states associated with the ith level of the spectrum, while W is
the number of distinct microstates associated with the whole distri-
bution set {ni}. The particles distribution corresponding to the sta-
tistical equilibrium is the most probable one, thus it is the one
that may be reached in the largest number of possible ways. Hence,
in order to find it, we compute the maximum W subject to the con-
servation of the number of particles

P
ini ¼ N, and to the preserva-

tion of the system energy
P

i�ini ¼ E. We adopt the method of
Lagrange’s undetermined multipliers, but rather than maximizing
W directly, we maximize logW, since log is a monotone transforma-
tion. This method results in the following condition:

X
i

log
ni þ gi

ni

� �
� a� b�i

� �
dni ¼ 0; ð3Þ

where a and b are the Lagrangian undetermined multipliers associ-
ated with the two restrictive conditions of conservation. Since the
variations dni are completely arbitrary, this condition can be satis-
fied if and only if all their coefficients vanish identically, namely:

log
ni þ gi

ni

� �
� a� b�i ¼ 0; 8i:

This equality leads to the following definition of Bose–Einstein
distribution:

ni ¼
gi

eaþb�i � 1
; ð4Þ

where a ¼ � lC
kBT and b ¼ 1

kBT are inversely proportional (by means of
Boltzmann’s constant kB) to the absolute temperature T of the sys-
tem at the equilibrium, and lC represents the chemical potential.

Given an ideal Bose–Einstein gas in equilibrium below its tran-
sition temperature, the Bose–Einstein condensation (BEC) is the
property that a finite fraction of particles occupies the lowest en-
ergy level. According to Penrose and Onsager [29], we can provide
a criterion of BEC for an ideal gas in equilibrium: BEC
() hn0i

N ¼ eOð1Þ, No BEC () hn0i
N ¼ oð1Þ, where hn0i is the average

number of particles that occupy the lowest energy level E0. (The
first equation is equivalent to hn0i

N ¼ constant, but it is weaker and
easier to apply.) For low values of temperature, i.e., when
T ? 0 K, the BEC takes place [30]. This phenomenon consists of a
very unusual state of aggregation of particles, called Bose–Einstein
condensate. Its characteristic is different from those of the solid
state, liquid state, gas and plasma, thus it is known as ‘‘the fifth
state of matter’’. In particular, below a critical temperature TBEC,
all the particles settle on the same quantum state and occupy the
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same energy level. Hence, they are absolutely identical, inasmuch
as there is no possible measurement that can tell them apart. In
other words, they lose their individuality, and the single-particle
perception is missing.

Inspired by Bianconi and Barabási’s work [27], we provide an
algorithm to investigate the BEC phenomenon in the k-SAT prob-
lem. By translating a SAT formula into a graph, we define the con-
densation of the formula over its fittest clause as the emergence of
a star-like topology in the graph. This phenomenon is associated
with the condensation of bosons on the lowest energy level (see
examples in Supplementary data).

3. The SAT to graph algorithm

An instance of the k-SAT problem consists of:

� a set X of variables, with jXj = n;
� a set C of clauses over X, where jCj = m, such that each clause Ci -
2 C, "i = 1, . . . , m, has k literals and can be written as Ci = L1 _ -
L2 _ � � � _ Lk. Each literal Ll 2 L, "l = 1, . . . , l, where
L ¼ X [ X [ fTrue; Falseg is the set of literals, jLj = l.

The problem is to find a satisfying truth assignment for the fol-
lowing formula:

F ¼ C1 ^ C2 ^ � � � ^ Cm: ð5Þ

The SAT to Graph Transformation Algorithm (S2G) translates a k-
SAT instance into a graph G = (V,E), where V are the vertices and E
are the edges. A vertex vi is a clause Ci of the formula F, i.e., vi = -
v(Ci), whereas each edge ejh represents a relation between two
clauses, i.e., ejh = (v(Cj), v(Ch)), as we see later. Let us introduce
two functions for literals and clauses. Firstly, we define the global
frequency of literals as:

uGðLlÞ ¼ occurrences of Ll in F; l ¼ 1; . . . ; l; ð6Þ

which reports the frequency of a literal into a k-SAT formula. Sec-
ondly, we define the global fitness of clauses as:

f GðCiÞ ¼
Xk

l¼1

uGðLlÞ; Ll 2 Ci; i ¼ 1; . . . ;m; ð7Þ

which is a fitness function to evaluate clauses and grows with a
monotonic behavior with respect to the uG of its literals. The con-
struction of the graph G = (V,E) is an iterative process in which each
clause Ci is assigned to a vertex (node) vi, and edges ejh are links
established according to an affinity function, as we see below. Since
the construction is dynamical, we need to define the local frequency
of literals and the local fitness of clauses. While the global ones are
determined on the complete formula F, the local ones concern only
the clauses that have been added as vertices in V using a subset F0 of
the clauses of F. In particular, we define the local frequency of literals
as follows:

uLðLlÞ ¼ occurrences of Ll in F 0; l ¼ 1; . . . ; l: ð8Þ

Analogously, the local fitness of clauses is defined as:

f LðCiÞ ¼
Xk

l¼1

uLðLlÞ; Ll 2 Ci; i ¼ 1; . . . ;m: ð9Þ

It is obvious that, at iteration i, a literal Ll has uL(Ll) = 0 in case it
belongs to a clause that has not been added to V(G) yet; when the
algorithm ends, uG(Ll) = uL(Ll), "l = 1, . . . , l.

Hereinafter we need to suppose that the order of literals in a
clause has no importance. However, since the OR operator is com-
mutative, it is possible to define a distance metric that states how
many literals are not in common between two clauses. Let Ci, Cj be

two clauses made up of literals Li
l and Lj

l respectively; we define
the following distance:

dðCi;CjÞ ¼ l 2 f1; . . . ; kg : Li
l – Lj

l

n o��� ���; ð10Þ

which is a metric distance that can be related to the well-known
Hamming distance [31]. In Supplementary data A, we prove that d
is a metric.

Let G = (V,E) be the graph obtained at the (i � 1)th iteration, and
F0 � F be the temporary k-SAT subformula F 0 ¼ Ct1 ^ Ct2 ^ � � � ^ Cti�1

.
In order to add a clause Cti

to G as a node vðCti
Þ, we estimate the

probability of being connected to a node that already belongs to
the graph; this probability must be computed for each node
(clause) added to G, since it is the criterion to build edges between
nodes. We define the probability that a new node vðCti

Þ is con-
nected to the node vðCtj

Þ 2 VðGÞ as:

Ptj
¼

ktj
� f LðCtj

ÞPjV j
m¼1ktm � f LðCtm Þ

; ð11Þ

where ktj
¼ degreeðvðCtj

ÞÞ is the connectivity of Ctj
(i.e., the number

of links shared by node vðCtj
Þ), and f LðCtj

Þ is the fitness of the clause
Ctj

. This probability distribution ensures that a new vertex is likely
linked to an existing one with high fitness value or/and high con-
nectivity [27]. We deduce that this process brings to a model in
which the attractiveness and evolution of a node are determined
by its fitness and by its number of links.

In order to assign the new node-clause Cti
an appropriate num-

ber representing an energy level [27], it is necessary to normalize
the local fitness values as f L

r ðCti
Þ ¼ f LðCti

Þ=f LðCtÞ, where Ct is the fit-
test clause in the temporary graph already built using F0. As a result,
as soon as the node vðCti

Þ enters the system, it has the following
energy (see [27]):

�ti
¼ �T � log f L

r ðCti
Þ; ð12Þ

where T ¼ 1
b, and b is a parameter used to model the temperature of

the system. (In this work, when comparing two or more energy lev-
els, we omit the multiplicative factor T.) If two different nodes are
assigned the same energy value in our model, it means (from a phys-
ical point of view) that they represent two different degeneration
states of the same energy level, as shown in Table 1.

The definition of probabilities and the linking criterion are the
building blocks of the S2G algorithm, which consists of three main
steps.

Step I. Let K = ;,V = ;, E = ;, and F0 = ;. Let i be the index repre-
senting the number of the iteration. Here, we set i = 1. The first
clause Ct1 to add to F0 is chosen randomly among the m clauses
of the given formula F. After computing the local fitness of the
clause, we assign to it the normalized local fitness f L

r ðCt1 Þ. Since
Ct1 is the only clause added to the graph so far, its f L

r is set to 1.
After that, we compute the energy level �t1 , which in this case is

Table 1
Dictionary translating the graph (left) into the k-SAT problem (center) and statistical
physics language (right).

G = (V,E) k-SAT Statistical physics

Node Clause Degeneration state of the
energy level of the node

Edge Link between two clauses One particle for each
degeneration state involved

Node weight Fitness of a clause Value of the energy level

Edge weight Probability of being
established

Weight on particles

46 C. Angione et al. / European Journal of Operational Research 227 (2013) 44–54



Author's personal copy

equal to 0. The variable t is used to store the index of the fittest
clause. Obviously, at the first iteration, it must be set to t1. The
pseudo-code of the first step is presented in Algorithm S1 in
Supplementary data.
Step II. Successively, we perform another step of the algorithm,
in order to establish the first link between two clauses, as
shown in Algorithm S4. This step and the following ones include
two procedures, shown in Algorithms S2 and S3. The second
clause is chosen such that it is the closest to Ct1 , in terms of
the distance defined in (10). If two or more clauses have the
same minimum distance from Ct1 , then a random clause is cho-
sen among them. Notice that at every iteration i all the local fre-
quencies of literals are updated, therefore the local fitness and
the energy level of clauses are updated as well. We perform
the normalization of the fitness in order to obtain a non-nega-
tive energy level. Indeed, the logarithm function, when its base
is greater than 1 and its argument belongs to the interval ]0,1],
returns a non-positive value; since the absolute temperature T
is non-negative, the energy level becomes a non-negative value,
as expected.
Step III (general step). The main loop of the S2G algorithm shown
in Algorithm 1 will be performed after a link is established. The
purpose, as in the previous step, is to choose an index ti such
that the Cti

is the clause closest to the clause with highest fit-
ness among those that are in the network so far (after the
(i � 1)th step). For each established link, we put a particle on
each of the two degeneration states of the two clauses involved.
Moreover, the probability of establishing a link becomes the
weight on the edge representing that link. The general step dif-
fers from the second step because it needs at least one edge in
the graph to work properly. This prerequisite allows us to have
at least two nonzero vertex connectivities, permitting to com-
pute the probabilities Ptj

, since the denominator in (11) is
surely nonzero. This is the reason why in Step II we forced Ct1

and Ct2 to link together.

Algorithm 1. S2G Algorithm

1: Selecting_the_First_Clause-Node ()
2: Connecting_First_two_Clauses-Nodes ()
3: while i < m do
4: i i + 1
5: Find_Closest_Clause ()
6: for j 1 to i � 1

7: Ptj  
ktj
�f LðCtj

ÞPi�1

m¼1
ktm �f LðCtm Þ

8: try to connect vðCti Þ to vðCtj Þ with probability Ptj

9: ktj  degree (vðCtj Þ) /⁄ update connectivity of node
vðCtj Þ ⁄/

10: end for
11: kti  degree (vðCti Þ) /⁄ update connectivity of node

vðCti Þ ⁄/
12: Update_Fitness ()
13: end while

The S2G algorithm is based on a probabilistic approach, which
could even lead to an unexpected network. According to this pro-
cess, the graph is built in such a way as to involve dynamical en-
ergy levels, i.e., the numerical value of each energy level changes
at each iteration, due to the dynamical changes of the local
frequencies.

The first clause added to the graph, i.e. Ct1 , could be chosen dif-
ferently. For instance, the fG(Ci) could be taken into account in the
clause choice, and the global fittest clause would be then selected

as first clause in G. In this way, the first mover advantage principle is
emphasized, since the first clause is also the fittest one, therefore it
is easier for it to acquire the majority of the links of the whole net-
work. It follows that this technique would lead to more BEC net-
works but prejudicing the unpredictability of the overall process.

When the graph is completed, we consider the connectivity of
the richest node (the node that has the maximum number of links)
in order to decide whether a Bose–Einstein condensation has oc-
curred. If the connectivity is large enough (the thresholds have
been determined experimentally, see Working hypothesis 2), we
say that a BEC has taken place in the graph, i.e., one node has a
huge fraction of edges and the remaining fraction is shared among
all the other nodes. If the graph does not show any condensation,
we compute the degree distribution in order to understand what
kind of network has developed. Moreover, we compute the mean
and the standard deviation of all nodes except the winner (i.e.,
the richest), so as to obtain simple statistics involving the rest of
the degree distribution.

The computational complexity of our algorithm is polynomial.
The Step II procedure has a complexity of O(N3), where
N = max{n,m,k}, due to the subprocedure that computes the dis-
tance d between the clauses eligible to join the graph and the fit-
test clause already added to it. The main loop of the S2G
algorithm has O(N4) time complexity, since it consists of the Step
II procedure applied (with slight modifications) to all of the
remaining clauses of the k-SAT formula.

4. Fitness-based preferential attachment

In this section we extend the S2G algorithm by including the
concept of preferential attachment, thus obtaining a new algorithm
called S2G-PA. Even this model starts with two nodes connected by
an edge. Exactly as in the previous model, at each iteration a new
node is added to the graph. The preferential attachment imple-
mented in the new algorithm is based on the same principle of
the algorithm used so far: if we consider a single node of the net-
work, the probability of acquiring new edges is positively corre-
lated with its degree. According to the previous section, in the
fitness-based model the connectivity is not the only parameter ta-
ken into account, but also the fitness plays an important role in
computing the probability of acquiring new edges.

The main difference between this model and the model pre-
sented before consists of the preferential out-degree (q), a technique
applicable to directed graphs. At each iteration i, the node that
joins the graph is forced to connect at most to q existing nodes
and at least to one node. Recall that in the previous model there
were no restrictions to the number of outgoing links (od (v)) that
a node could have. It follows that a number of nodes, when they
joined the existing network, did not link to any other node of the
graph. This caused the probability P (probability of linking a new
node to them) to remain always 0, therefore their degree remained
equal to 0 during the whole process, i.e., they never linked to the
main connected component of the graph. On the contrary, the
new algorithm ensures that all the nodes will be part of the net-
work, i.e., all the nodes will have at least one link and G has only
one connected component. The output networks of S2G and S2G-
PA can be compared in Supplementary data C and D. When the
most connected nodes have the highest number of particles, and
the winner node is identified with the lowest energy level, we ob-
tain a clear ‘‘signature’’ of BEC in a preferential attachment scheme
with fitness, as proved by Borgs et al. [32]. These facts help us con-
firm that when the BEC occurs there is a clear mapping between
the Bose gas and the graph derived by the S2G algorithm.

The preferential attachment ensures that the condition
1 6 odðvðCti

ÞÞ 6 q; 8i ¼ 1; . . . ;m holds at each iteration, where

C. Angione et al. / European Journal of Operational Research 227 (2013) 44–54 47
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od is the node out-degree. In practice, our new algorithm sets the
out-degree to q, but two or more links may be directed to the same
node, depending on the probabilities computed (nevertheless, mul-
tiple links are considered as simple ones). Hence, the resulting out-
degree of the new node may be less than q, but it is always P1. Con-
versely, the in-degree has no restrictions. Generally, the standard
preferential attachment leads to random scale-free Barabási and Al-
bert networks [33], in which the degree distribution decreases with
a power law, that is reduced to a line in logarithmic scale. In our case,
the preferential attachment is accompanied by a fitness function
(that is why the algorithm has been called fitness based preferential
attachment), so the resulting network is not exactly a scale-free net-
work. Furthermore, the new model causes competition among nodes
[34]. Indeed, a new node has a fixed number q of links available,
therefore the old nodes have to compete to acquire one link from
the new node. This competition gets more and more challenging
as the graph increases, since the number of nodes increases but
the number of available links from a new node remains the same.
It is evident that the resulting network obeys the widely known first
mover advantage principle [27], according to which the first nodes of
the graph have more time to gain links than the last ones. Finally, our
fitness-based model ensures a lot of unpredictability to the system,
since the fitness of each node changes at each iteration, as explained
before. Thanks to this mechanism, a node with high fitness may get
into the graph at a later time and become richer and richer till it over-
comes the richest nodes. On the other hand, once that a node has en-
tered the graph, its fitness may remain the same in the iterations
after, thus other nodes may overcome it. These features lead to a dy-
namic and erratic evolution of the network.

5. Non-integer out-degree

Let us consider the ith iteration of the graph generation, when the
node vðCti

Þ is added to the network. Suppose that, according to the
probabilities P, the new node vðCti

Þ must be linked to the existing
node vðCtj

Þ. In this section, we make the following hypothesis.

Working hypothesis 1. An outgoing link is less important than an
incoming link, that is, the incoming links are rewarded more than
the outgoing links.

This hypothesis implies that our graph must be regarded as a di-
rected graph in order to maintain the correspondence between a k-
SAT instance and its graph, as well as to distinguish between out-
going and incoming links. According to the Google-like reference
[35], the same edge between the new node vðCti

Þ and the existing
node vðCtj

Þ does not increase their connectivity kti
and ktj

(respec-
tively) in the same way (see Fig. 1).

Nevertheless, we continue to represent our graph as an undi-
rected graph, making use of the relation ki = h � od (v(Ci)) + id
(v(Ci)), where od and id are the node out-degree and in-degree
respectively. It is evident that a non-integer connectivity (i.e., a
non-integer degree) leads to a new kind of evolution of the net-
work. In this new model, nodes aim to connect to a particular node
in the network, and when they manage to connect to it, that node
gets richer and richer more rapidly than in the previous models. In
fact, as incoming links are rewarded more than outgoing links, the

connectivity of the node that acquires links raises much more than
the connectivity of the nodes linking to it. We set h = 0.33 so that
an outgoing link is rewarded a third of an incoming link. The plot
in Fig. 2 has been obtained by fixing the number of variables
n = 100 and letting the number of clauses m vary from 0 to 1000,
so a ¼ m

n (number of clauses over number of variables) varies from
0 to 10. The plot depicts the relationship between a and the per-
centage of each of the three classes of network returned by our
algorithm, according to the following hypothesis.

Working hypothesis 2. Let us call fraction-winner f the percentage
of links acquired by the winner node over the whole set of links.
We say that:

� a Fit-get-rich topology takes place when f < 0.75;
� a Partial BEC takes place when 0.75 6 f < 0.90;
� a Full BEC takes place when f P 0.90.

As shown in Fig. 2, we obtain a large number of networks that
can undergo the full BEC (in which one node is an evident ‘‘winner’’
node). Fig. 2 also shows that the number of BEC networks produced
by our algorithm increases as a decreases.

In Algorithm 2, we show the whole fitness-based preferential
attachment algorithm with non-integer out-degree (S2G-PA). The
preferential attachment technique replaces the Ptj

attachment
scheme used in S2G. The S2G-PA algorithm uses the cumulative
distribution function to ensure that, for each node, the probability
of acquiring new links is directly proportional to its P. Compared
to the S2G model, the S2G-PA ensures that all the nodes have a
nonzero connectivity, and also that an existing node-clause v(Cj)
with high fitness and connectivity (i.e., with high Ptj

) has a higher
probability of acquiring links from new nodes, inasmuch as the
non-integer out-degree method emphasizes this behavior. Instruc-
tions 16 and 17 show how the non-integer out-degree has been
implemented in our S2G-PA algorithm.

Algorithm 2. S2G-PA Algorithm

1: Selecting_the_First_Clause-Node ()
2: Connecting_first_two_Clauses-Nodes ()
3: while i < m do
4: i i + 1
5: Find_Closest_Clause ()
6: for j 1 to i � 1 do

7: Ptj  
ktj
�f LðCtj

ÞPi�1

m¼1
ktm �f LðCtm Þ

8: Pcumt0 ¼ 0
9: for j = 1 to i � 1 do
10: Pcumtj ¼ Pcumtj�1 þPtj /⁄ compute cumulate

probabilities ⁄/
11: end for
12: for z = 1 to q do
13: x random(]0,1])
14: find j 2 {1, . . . ,i � 1} such that

Pcumtj�1 < x 6 Pcumtj

15: connect vðCti Þ to vðCtj Þ
16: ktj  ktj þ 1 /⁄ update connectivity of node

vðCtj Þ ⁄/
17: kti  kti þ h /⁄ update connectivity of node

vðCti Þ ⁄/
18: end for
19: end for
20: Update_Fitness ()
21: end while

Fig. 1. Link between the new node Cti
and the existing node Ctj

. The dashed line
represents the non-integer out-degree h of Cti

, while the continuous line represents
the integer in-degree of Ctj

.
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6. S2G-driven SAT solvers

Using the information provided by the S2G algorithm, in this sec-
tion we show the improvement obtained in the performance of the
ChainSAT algorithm [26]. The S2G algorithm assigns an energy value
to each clause of a k-SAT random instance. As seen before, the fitness
value of a clause is negatively correlated with its energy, and posi-
tively correlated both with the probability of having a high connec-
tivity in the network and with the probability that its literals are
frequently occurring in the instance. Thus, the probability of satisfy-
ing all the linked clauses by assigning truth values only to one of
them is larger if we assign truth values to one with the lowest energy
value. Consequently, in order to solve an instance we order the
clauses by energy level. If we find two or more clauses having the
same energy, we put first the one with the largest connectivity in
the graph provided by the S2G algorithm. If they have also the same
connectivity, then we order them randomly. As a result, an order is
established among clauses of a random k-SAT instance. In the fol-
lowing we refer to the order of the clauses as their ‘‘weight’’. In par-
ticular, the heaviest clause will be the one on the lowest energy level.

ChainSAT [26] is a heuristic that never moves up in energy,
since the number of unsatisfied clauses is a non-increasing func-
tion of the sequence of trial configurations traversed by the algo-
rithm. For k = 4, k = 5, and k = 6, ChainSAT is shown to solve
random k-SAT problems almost surely in time linear in the number
of variables. The ChainSAT algorithm, given in pseudo-code in
Algorithm S5, (i) never increases the energy of the current config-
uration S, and (ii) exercises circumspection in decreasing the en-
ergy. The ChainSAT algorithm has two adjustable parameters: p1

for controlling the rate of descent (by accepting energy-lowering
flips), and p2 for limiting the length of the chains, in order to avoid
looping. In our experiments, we set p1 = p2 [26].

We present two new versions of the ChainSAT algorithm. In
these new versions we replace the random choice of clauses (see
lines 5 and 18 of Algorithm S5) with an ordered one. Since Chain-
SAT is based on a non-increasing energy principle [26], and given
the energy levels provided by the S2G algorithm, our idea is to se-
lect clauses with minimum energy even when ChainSAT performs
a random selection.

Let us introduce a set A = {a1, a2, . . . , am}, where m is the number
of clauses of the k-SAT formula. The set A is used to record which
clauses of the k-SAT instance have already been chosen, so that loops
(consisting of choosing the same clause repeatedly) are avoided. Let
H = {C1, C2, . . . , Cr} be the set of clauses among which the algorithm
chooses (line 5 or 18 of Algorithm S5). We suppose that these clauses
are arranged in decreasing order of weight. In particular, C1 is one of
the heaviest clauses in H, i.e., C1 is one of the clauses of H with the
lowest energy. The steps for selecting a clause in the line 5 or 18 of
Algorithm S5 are the following. Initially we set ai = 0, "i = 1, . . . , m.
At each step we require that the algorithm chooses the heaviest
clause Ci among those in H such that ai = 0. Every time a clause Ci is
chosen, we set ai = 1. Step by step, the number of elements in A equal
to 1 increases. When ai = 1, "Ci 2 H, then the clause is chosen ran-
domly. This random choice is necessary to prevent that our algo-
rithm always analyzes the same chains clause–variable–clause.

Our modified version of ChainSAT presented so far selects the
new clause using the same set of elements ai = 0, "i = 1, . . . , m,
both for the satisfied and for the unsatisfied clauses. We call this
version LC-ChainSAT, where LC stands for ‘‘Linked Clauses’’, since
the choice of a clause in lines 5 and 18 of Algorithm S5 is based
on the same set A.

We also present a second new version of the ChainSAT algo-
rithm, called NLC-ChainSAT, where NLC stands for ‘‘Non Linked
Clauses’’. This new version differs from the first one because we re-
place A with two sets Asat and Aunsat, with the same structure of A.
We use Aunsat to store the clauses chosen (as not satisfied) by line 5
of Algorithm S5, and Asat to store the clauses chosen (as satisfied)
by line 18. The new algorithm runs exactly like the previous one
but when it must select a new clause, it examines the set Aunsat

or Asat depending on whether the new clause is chosen by line 5
or by line 18 respectively.

7. Experimental results

In this section we investigate the outcomes of our algorithms.
First, we give numerical evidence of the presence of Bose–Einstein
condensation in the k-SAT problem, focusing on the phase transi-
tion region. We evaluate the phase diagram of the S2G algorithm
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Fig. 2. Percentage of each kind of network against ratio of clauses to variables, with fixed number of variables n = 100 and non-integer out-degree h = 0.33. The lines represent
a sixth-order polynomial regression to fit the data. Full BEC occurs when the winner node gets greater or equal to 90% of links of the network. Partial BEC occurs when the
winner node gets greater or equal to 75% and less than 90% of links of the network. If the percentage is less than 75%, the network has a fit-get-rich topology.
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to show the transition between a fit-get-rich phase and a winner-
takes-all phase. Second, we analyze the SAT solvers proposed
above by evaluating their performance on both random and real-
life SAT instances.

7.1. S2G results

For the 3-SAT problem, there is strong evidence [2] that the
phase transition between solvable and unsatisfiable instances is lo-
cated at a = 4.256, where a ¼ m

n is the ratio between the number of
clauses m and the number of variables n. In our experiments we

use the van Gelder’s k-SAT instance generator MKCNF.C.1 We asked
the program to generate uniformly satisfiable and unsatisfiable for-
mulas to obtain a purely uniform random k-SAT distribution. For our
experimental protocol, we consider a 2 ]0,10] and n 2 {10,25,50,75,
100}. For each value of a, we consider 100 formulas and perform 30
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Fig. 3. Bose–Einstein condensation (BEC) in 3-SAT. We report on the x-axis the ratio a of clauses to variables, and on the y-axis the percentage of BEC networks found. The
points have been fitted through a sixth-order polynomial regression. The gray stripe shows the region where the critical temperature TBEC for Bose–Einstein condensation
could be located.
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Fig. 4. Phase diagram of 3–SAT. We report the fraction of links shared by the winner against a (the ratio of clauses to variables). Each point is an average over 1000 3–SAT
instances with 30 graphs per instance. We have performed a sixth-order polynomial regression to fit the data. Satisfiable instances (with high probability) belong to the
winner-takes-all phase. Unsatisfiable instances (with high probability) belong to the fit-get-rich phase. The critical temperature TBEC for Bose–Einstein condensation could be
located in the gray area in the neighborhood of the SAT-UNSAT phase transition a = 4.256. Below the critical temperature, the fraction winner increases at a higher rate.

1 Available at ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/
UCSC/instances. The program MKCNF.C takes four inputs: r, the random seed; k, the
number of literals in each clause; n, the number of Boolean variables; m, the number
of clauses.
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independent graph G constructions per formula. We make use of the
S2G-PA algorithm by imposing h = 0.33 and q = 1.

In Fig. 3 we plot the percentage of BEC networks observed by
varying a. In general, when a < 3 the resulting graph most likely
undergoes a clear Bose–Einstein condensation; in this phase, the
fittest clause maintains a large number of links even if the graph
expands. Moreover, if a increases and enters the phase transition
region, it is evident that the drop in the number of Bose–Einstein
condensations becomes smoother. This different behavior seems
to match with the increasing complexity of formulas with
a � 4.256 (the locus of the phase transition for 3-SAT), and there-
fore we investigate it more thoroughly later. For a > 5, the graph
shows a fit-get-rich behavior, i.e., there is an increasing number
of fittest nodes (clauses), but there is no more a unique winner
node. This behavior remarks that, for increasing a values (close
to the UNSAT phase of 3-SAT), we have to find a truth assignment
for many clauses to obtain a satisfiable formula. These empirical
evidences are consistent with the transition between SAT and UN-
SAT instances [3].

In order to evaluate the way in which a (i.e., the ratio clauses
to variables) influences the evolution of the graph associated with
k-SAT instances, we examine the fraction winner f defined as the
ratio of the number of links shared by the winner (i.e., the highest
degree node) to the number of links of the whole graph. Fig. 4

shows how the fraction winner varies as function of the ratio of
clauses to variables. We let the number of variables vary in the
set {10,25,50,75,100}. Each point of the plot has been computed
by averaging over 1000 different 3-SAT instances, with 30 graph
generations per instance. The plot shows that the fraction-winner
f decreases with a. When a 3-SAT instance is satisfiable (with
high probability), the S2G-PA algorithm produces a graph con-
densed over the fittest clause. Conversely, when a 3-SAT instance
is unsatisfiable (with high probability), its graph exhibits a win-
ner node incapable of maintaining the whole connectivity of the
network, and some hubs appear and grow following the fit-get-
rich model. By looking at the plots in Fig. 4 from right to left,
one can observe that when a becomes smaller than the critical
value 4.256, the winner node holds the vast majority of links.
In this case, the Bose–Einstein condensation takes place regard-
less of the number of variables. Moreover, the plot concerning
the case of 50 variables clearly shows a smooth drop for
4 < a < 5, indicating that the 50-variables graphs undergo the
slowest Bose–Einstein condensation (provided that a decreases).
It is possible to note that for a < 1.1 the fraction winner is equal
to 1, since the winner node holds all the links in the network, i.e.,
all the edges have the winner node as a vertex. Our results sug-
gest that this phase, called winner-takes-all (WTA), starts at
a = 1 for large values of n.
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Fig. 5. 3-SAT Bose–Einstein condensation locus. We plot the second derivative of the fraction winner as function of the ratio a of clauses to variables. The SAT-UNSAT phase
transition a = 4.256 is near the local maximum of the second derivative, and therefore corresponds to a quick change of the fraction-winner slope. In other words, the 3-SAT
phase transition acts as the BEC critical temperature.
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One can notice that below the phase transition region the slopes
of the plots exhibit a different behavior than in the other regions.
Specifically, below the phase transition of 3-SAT, located at
a = 4.256, the fraction winner increases at a higher rate. In order
to evaluate the slopes, in Fig. 5 we plot the second derivative of
the polynomial curves of Fig. 4 as function of a. A high value of
the second derivative indicates a rapid change of the fraction-win-
ner slope. For 25, 50, and 75 variables, the 3-SAT phase transition
found by Mézard et al. [3] approximates the local maximum of
the fraction-winner second derivative. This local maximum repre-
sents the value of a corresponding to the most rapid change in the
fraction-winner slope in the neighborhood of 4.256. Therefore, the
phase transition of 3-SAT seems to be the critical temperature for
Bose–Einstein condensation. These outcomes confirm the experi-
mental findings above-mentioned, and are consistent with those
referring to the plots in Fig. 3. The behavior of the plot of 100 vari-
ables, slightly different from the others, is due to the unexpected
values of the fraction winner obtained as a approaches 10, which
cause the sixth-order curve to exhibit a high curvature in the
neighborhoods of a = 2.6 and a = 8.

In Fig. 6 we plot the mean of the connectivity of the network
nodes, computed on the degree distribution without considering
the winner node. As previously discussed, for increasing a the win-
ner node decreases its connectivity, therefore the other nodes ac-
quire links. In the inset, we plot the standard deviation of the 50-
variables degree distribution (the plots concerning 10 and 100
variables are shown in Fig. S4 in Supplementary data E). High stan-
dard deviation indicates that the connectivity values are scattered,
hence the network exhibits highly connected hubs. More precisely,
instances with high constraint density a not only have the winner
node less rich than low constraint density instances, but also show
higher spreading in the non-winner node connectivity. In other
words, the number of hubs is positively correlated with a, and this
result is consistent with the plot in Fig. 3, which shows that the
number of condensed network decreases as a increases. Remark-
ably, the rate at which the standard deviation increases is higher

to the left of the Bose–Einstein condensation region. The growing
hubs of typical S2G-PA output networks are shown in Fig. S5 in
Supplementary data F.

7.2. LC-ChainSAT and NLC-ChainSAT results

We evaluate each algorithm on a collection of 6885 k-SAT in-
stances obtained from publicly available sources. This benchmark
consists of (i) 40 Intel sequential circuits and 95 l2s benchmarks
used in the 2007 and 2008 hardware model checking competition
[36], (ii) 2250 random instances for each value of k (k = 3,k = 4, and
k = 5), generated uniformly at random using the van Gelder’s
generator. We use AIGTOCNF [37] to convert instances from AIG for-
mat to CNF. Then, we convert them into 3-CNF instances. We set
n 2 {25,50,75,100,125} and m such that a ¼ m

n 2 ½asatðkÞ � 4;

asatðkÞ þ 2�, where asat(k) has the estimated values asat(3) = 4.256,
asat(4) = 9.931, asat(5) = 21.117 (see [38]). For each value of a, we
generate 30 different k-SAT instances. We also introduce the fol-
lowing stop criterion [2]: we stop the algorithm either when a
solution is found or when 106 cycles of the main body of the algo-
rithm (i.e., 106 formula evaluations) have been carried out.

The comparison between ChainSAT and our two modified ver-
sions is based on the following definition. Let Z1 and Z2 be two
algorithms tested on the same set of instances. We say that Z1 per-
forms better than Z2 if one of the following conditions is met: (i) Z1

satisfies more instances than Z2; (ii) both Z1 and Z2 satisfy the same
number of instances, but the average number of clauses satisfied
by Z1 is greater than the average number of clauses satisfied by
Z2; (iii) both Z1 and Z2 satisfy the same number of instances with
the same average number of clauses satisfied, but Z1 performs less
flips than Z2. The parameters of ChainSAT have been chosen to be
small enough to work at least up to the ‘‘dynamical transition’’
[25]: we have set p1 = p2 = 0.005 (k = 3), 0.0001(k = 4), and 0.0002
(k = 5) [26].

The analysis of LC-ChainSAT and NLC-ChainSAT shows an
improvement in the performance of 3-SAT, 4-SAT, and 5–SAT solv-
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report the standard deviation of the mean connectivity for 50-variables instances. Satisfiable instances (with high probability) are translated into condensed graphs, as all the
connectivities are equal to h and the standard deviation is zero. Conversely, unsatisfiable instances (with high probability) are translated into fit-get-rich networks with high
standard deviation, thus with emerging hubs. In agreement with the fraction winner, to the left of the condensation area of Fig. 4 both the mean and the standard deviation
exhibit a higher slope.
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ers. In particular, LC-ChainSAT performs better than ChainSAT in
56.8%, 57.3% and 60% of the benchmarks using 3-SAT, 4-SAT, and
5-SAT instances respectively. Likewise, NLC-ChainSAT performs
better than ChainSAT in 58.3%, 58.7%, and 54.1% of the benchmarks
respectively. A more detailed analysis of the data is shown in Ta-
ble 2. For each algorithm we report: (i) the number of instances
satisfied; (ii) the average number of clauses satisfied in the whole
set of instances (see the MaxSAT comparison in Fig. 7); (iii) the
number of flips obtained running the algorithm on the whole set
of instances (see Fig. 8). The MaxSAT problem consists of determin-
ing a truth assignment that maximizes the number of clauses sat-
isfied [39]. In order to confirm our results, in Table S1 we compare
LC-ChainSAT and ChainSAT on further 171 instances [36]. We ob-
tain another confirmation of our results if we run the algorithms
with stop criterion set as 104 formula evaluations. In this case,
the number of satisfied clauses is almost equal to zero for all a val-
ues, due to the descent circumspect that characterizes the Chain-
SAT algorithm. Thus, by comparing the percentage of the clauses
satisfied, both of our modified algorithms are able to satisfy more
clauses than the ChainSAT, though all algorithms evaluate each in-
stance the same number of times (104 times at most).

Even if we are not yet able to establish which of the two ver-
sions is the best, our results point out that ordering clauses with
the information provided by the S2G algorithm results in an
improvement of the ChainSAT performance.

8. Discussion

Our work, using a mapping between the k-SAT problem and the
Bose gas, shows numerical evidence for Bose–Einstein condensa-
tion in a network model for k-SAT. Analogously to complex net-
works [27], the graphs of k-SAT instances follow Bose statistics
and can undergo Bose–Einstein condensation. It is evident that
the total number of links shared by the most connected node (also
called winner node) varies as function of the ratio a of clauses to
variables. In particular, the fraction winner, plotted as function of
a, indicates the difference between the Bose–Einstein phase and
the fit-get-rich phase. When a < 1.1, the winner node shares all
the edges of the graph (winner-takes-all phase). For low a values,
the fittest node maintains a finite fraction of links even though
the number of variables increases (Bose–Einstein phase); for high
a values, the fraction of links connected to the winner decreases
with increasing a (fit-get-rich phase). Moreover, the mean and
the standard deviation of the non-winner degree distribution in-
crease with increasing a, as growing hubs appear in the graph.

It is well known that the phase transition of 3-SAT occurs when
the ratio a of clauses to variables belongs to a neighborhood of
4.256. In our work we experimentally proved that the critical tem-
perature for Bose–Einstein condensation in a k-SAT graph also be-

longs to the same neighborhood. This fact allows us to draw an
important conclusion: there is a strict correspondence between
the phase transition of k-SAT and the critical temperature for
Bose–Einstein condensation. To our knowledge, this is the first
time that complex networks and Bose–Einstein condensation are
related to the k-SAT problem without a priori examination of its
truth assignments.

We have also presented a hybrid SAT solver that combines the
ChainSAT algorithm and the information provided by the S2G algo-

Table 2
Summary of SAT solvers performance. Both LC-ChainSAT and NLC-ChainSAT outper-
form ChainSAT in terms of clauses satisfied by the algorithm. For k = 4, although
ChainSAT performs better than our modified versions in terms of number of flips
carried out, it does not maximize the number of satisfied clauses.

Solver Solved MaxSAT Flips

k = 3 ChainSAT 2117 38633.57 178,793
LC-ChainSAT 2129 38646.77 179,421
NLC-ChainSAT 2132 38647.47 178,543

k = 4 ChainSAT 2089 84043.90 11,379,888
LC-ChainSAT 2103 84054.10 11,389,576
NLC-ChainSAT 2104 84053.92 11,383,184

k = 5 ChainSAT 2047 166720.88 16,210,343
LC-ChainSAT 2057 166726.64 16,206,307
NLC-ChainSAT 2055 166725.50 16,254,044
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Fig. 7. MaxSAT for k = 3, k = 4, and k = 5. These plots show the percentage of clauses
satisfied by LC-ChainSAT and ChainSAT as function of the number of clauses m and
variables n. Remarkably, when solving 3-SAT instances, LC-ChainSAT clearly
outperforms ChainSAT.
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rithm. Our approach is based on the analysis of the energy level re-
lated to each clause. We demonstrate that by ordering clauses
according to their energy we outperform one of the best SAT solv-
ers (ChainSAT, see results [26]) on the majority of the benchmarks.
This means that we enhance an algorithm that is able to solve k-
SAT problems almost surely in time linear in the number of vari-
ables. Hence, our algorithms could also be a good tool from an
application point of view, e.g., checking satisfiability of formulas
in hardware and software verification.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejor.2012.11.039.
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Fig. 8. Computational effort for k = 5. We plot the number of flips (normalized to 1)
performed by the two algorithms. LC-ChainSAT improves ChainSAT employing
almost the same numbers of flips, therefore requiring the same computational
effort.
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